ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вычислите:
а) $ \sqrt[3]{20+\sqrt{392}}$ + $ \sqrt[3]{20-\sqrt{392}}$;
б) $ \sqrt[3]{5\sqrt{2}+7}$ - $ \sqrt[3]{5\sqrt{2}-7}$;
в) $ \sqrt{x+6\sqrt{x-9}}$ + $ \sqrt{x-6\sqrt{x-9}}$    (9 $ \leqslant$ x $ \leqslant$ 18).

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 60872

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Индукция (прочее) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 8,9,10

Докажите следующие равенства:
  а) = + ;
  б) = 2 cos.

Прислать комментарий     Решение

Задача 79410

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Упростить выражение   .

Прислать комментарий     Решение

Задача 60858

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 4
Классы: 8,9,10

Докажите равенство

$\displaystyle \sqrt[3]{6+\sqrt{\frac{847}{27}}}$ + $\displaystyle \sqrt[3]{6-\sqrt{\frac{847}{27}}}$ = 3.


Прислать комментарий     Решение

Задача 60860

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 4
Классы: 8,9,10

Вычислите:
а) $ \sqrt[3]{20+\sqrt{392}}$ + $ \sqrt[3]{20-\sqrt{392}}$;
б) $ \sqrt[3]{5\sqrt{2}+7}$ - $ \sqrt[3]{5\sqrt{2}-7}$;
в) $ \sqrt{x+6\sqrt{x-9}}$ + $ \sqrt{x-6\sqrt{x-9}}$    (9 $ \leqslant$ x $ \leqslant$ 18).

Прислать комментарий     Решение

Задача 60870

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 8,9,10

Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .