Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.

Вниз   Решение


100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?

ВверхВниз   Решение


Известно, что  x + 1/x  – целое число. Докажите, что  xn + 1/xn  – также целое при любом целом n.

ВверхВниз   Решение


Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

ВверхВниз   Решение


При каких значениях параметра a один из корней уравнения   x² – 15/4 x + a³ = 0  является квадратом другого?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 60930

Темы:   [ Методы решения задач с параметром ]
[ Квадратные уравнения. Формула корней ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9

При каких значениях параметра a один из корней уравнения   x² – 15/4 x + a³ = 0  является квадратом другого?

Прислать комментарий     Решение

Задача 60942

Тема:   [ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Изобразите ту часть плоскости (x;y), которая накрывается всевозможными кругами вида

(x - a)2 + (y - a)2 $\displaystyle \leqslant$ 2 + a2.


Прислать комментарий     Решение

Задача 110128

Темы:   [ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10,11

Автор: Храмцов Д.

Найдите все x, при которых уравнение  x² + y² + z² + 2xyz = 1  (относительно z) имеет действительное решение при любом y.

Прислать комментарий     Решение

Задача 60959

Темы:   [ Методы решения задач с параметром ]
[ Квадратные неравенства и системы неравенств ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 8,9,10

Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

Прислать комментарий     Решение

Задача 60995

Темы:   [ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 8,9,10,11

При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .