ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов. 100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку. Известно, что x + 1/x – целое число. Докажите, что xn + 1/xn – также целое при любом целом n.
Докажите тождество:
12 + 22 +...+ n2 = При каких значениях параметра a один из корней уравнения x² – 15/4 x + a³ = 0 является квадратом другого? При каком положительном значении p уравнения 3x² – 4px + 9 = 0 и x² – 2px + 5 = 0 имеют общий корень? На прямой отметили несколько точек. После этого между каждыми двумя соседними точками добавили по точке. Такую операцию повторили три раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале? В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета? У Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.) Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет. Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые – направо, а остальные – кругом. Изобразите ту часть плоскости (x;y), которая накрывается всевозможными кругами вида
(x - a)2 + (y - a)2
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]
При каких значениях параметра a один из корней уравнения x² – 15/4 x + a³ = 0 является квадратом другого?
Изобразите ту часть плоскости (x;y), которая накрывается всевозможными кругами вида
(x - a)2 + (y - a)2
Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y.
Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2].
При каком положительном значении p уравнения 3x² – 4px + 9 = 0 и x² – 2px + 5 = 0 имеют общий корень?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке