Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что если многочлен  f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n,  то он принимает целые значения во всех целых точках.

Вниз   Решение


Найдите расстояние от точки D(1;3;2) до плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .

ВверхВниз   Решение


На ребре BB1 куба ABCDA1B1C1D1 взята точка F так, что B1F = BB1 , на ребре C1D1 – точка E так, что D1E = C1D1 . Какое наибольшее значение может принимать отношение , где точка P лежит на луче DE , а точка Q – на прямой A1F ?

ВверхВниз   Решение


Вводится сначала число N, а затем N чисел. Выведите эти N чисел
в следующем порядке: сначала выводятся все нечетные числа в том порядке,
в каком они встречались во входном файле, а затем - все четные.

Входные данные
Вводится число N (0<N<100), а затем N чисел из диапазона Integer.

Пример входного файла
7
2 4 1 3 5 3 1

Пример выходного файла
1 3 5 3 1 2 4

ВверхВниз   Решение


Сфера радиуса 4 с центром в точке Q касается трёх параллельных прямых в точках F , G и H . Известно, что площадь треугольника QGH равна 4 , а площадь треугольника FGH больше 16. Найдите угол GFH .

ВверхВниз   Решение


Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых AB и DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).

ВверхВниз   Решение


Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.

ВверхВниз   Решение


Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.
Докажите, что все его коэффициенты рациональны.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите радиус сферы, вписанной в пирамиду.

ВверхВниз   Решение


Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите расстояние от точки D до плоскости ABC .

ВверхВниз   Решение


Вводится сначала число N, а затем N чисел. Выведите эти N чисел
в обратном порядке.

Входные данные
Вводится число N (0<N<100), а затем N чисел из диапазона Integer.

Выходные данные
Выведите N чисел в обратном порядке

Пример входного файла
7
2 4 1 3 5 3 1

Пример выходного файла
1 3 5 3 1 4 2

ВверхВниз   Решение


Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 61048

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Решите уравнение  

Прислать комментарий     Решение

Задача 61049

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Докажите тождество  

Прислать комментарий     Решение

Задача 61050

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3
Классы: 8,9,10

Пусть  x1 < x2 < ... < xn  – действительные числа. Постройте многочлены   f1(x),  f2(x), ...,  fn(x)  степени  n – 1,  которые удовлетворяют условиям   fi(xi) = 1  и   fi(xj) = 0  при  i ≠ j  (i, j = 1, 2, ..., n).

Прислать комментарий     Решение

Задача 61055

Тема:   [ Интерполяционный многочлен Лагранжа ]
Сложность: 3+
Классы: 8,9,10

Постройте многочлены  f(x) степени не выше 2, которые удовлетворяют условиям:
  а)   f(0) = 1,   f(1) = 3,   f(2) = 3;
  б)   f(–1) = –1,   f(0) = 2,   f(1) = 5;
  в)   f(–1) = 1,   f(0) = 0,   f(2) = 4.

Прислать комментарий     Решение

Задача 61056

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .