|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼. Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям: |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
Дайте геометрическую интерпретацию следующих неравенств:
Найдите min |3 + 2i – z| при |z| ≤ 1.
Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
z2, z1, z0 лежат на одной прямой тогда и только тогда, когда
Страница: 1 2 3 4 5 6 >> [Всего задач: 29] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|