|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На продолжении стороны AC за точку A
отложен отрезок AD = AB, а за точку C – отрезок CE = CB. Докажите, что условием того, что четыре точки z0, z1, z2, z3 лежат на одной окружности (или прямой) является вещественность числа |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 501]
Хорды AB и CD окружности пересекаются в точке M, причём
AM = AC.
Диагональ AC вписанного четырёхугольника ABCD является биссектрисой угла DAB.
Докажите, что условием того, что четыре точки z0, z1, z2, z3 лежат на одной окружности (или прямой) является вещественность числа
На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BD и TC – в точке F. Докажите, что прямые EF и AB параллельны.
Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 501] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|