ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501]
Дан выпуклый шестиугольник ABCDEF. Известно, что ∠FAE = ∠BDC, а четырёхугольники ABDF и ACDE являются вписанными.
Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что ∠C1AP = ∠C1B1P.
Из произвольной точки M внутри острого угла с вершиной A
опущены перпендикуляры MP и MQ на его стороны. Из вершины A
проведён перпендикуляр AK на PQ. Докажите, что
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке