ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей? а) Докажите, что центр масс существует и единствен для любой
системы точек.
Пусть an – число решений уравнения x1 + ... + xk = n в целых неотрицательных числах и F(x) – производящая функция последовательности an. В комнате находятся 85 воздушных шаров — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров? Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками. В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра. Встречается ли в треугольнике Паскаля число 1999? Около данного круга опишите равнобедренный прямоугольный треугольник.
В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол. Докажите, что при a, b, c > 0 имеет место неравенство Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке. Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет). Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями — 200 г и 50 г; б) с одной гирей 200 г? Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F. Коля Васин гулял после школы пять часов. Сначала он шёл по горизонтальной дороге, затем поднялся в гору и, наконец, по старому маршруту возвратился назад в исходный пункт. Его скорость была 4 км/ч на горизонтальном участке пути, 3 км/ч при подъеме в гору и 6 км/ч – при спуске с горы. Какое расстояние прошёл Коля Васин? |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 154]
Коля Васин гулял после школы пять часов. Сначала он шёл по горизонтальной дороге, затем поднялся в гору и, наконец, по старому маршруту возвратился назад в исходный пункт. Его скорость была 4 км/ч на горизонтальном участке пути, 3 км/ч при подъеме в гору и 6 км/ч – при спуске с горы. Какое расстояние прошёл Коля Васин?
Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?
Марья Петровна идет по дороге со скоростью 4 км/ч. Увидев пенёк, она садится на него и отдыхает одно и то же целое число минут. Михаил Потапович идёт по той же дороге со скоростью 5 км/ч, зато сидит на каждом пеньке в два раза дольше чем Марья Петровна. Вышли и пришли они одновременно. Длина дороги – 11 км. Сколько на ней могло быть пеньков?
Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?
Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 154]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке