ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1308]      



Задача 60903

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Пусть l (n) — наименьшее число умножений, необходимое для нахождения xn. На примере чисел n = 15 и n = 63 покажите, что бинарный метод возведения в степень (смотри задачу 5.64) не всегда оптимален, то есть для некоторых n выполняется неравенство l (n) < b(n).

Прислать комментарий     Решение

Задача 61539

Темы:   [ Задачи-шутки ]
[ Квадратные корни (прочее) ]
Сложность: 3
Классы: 9,10

``1 = - 1''. Изучив комплексные числа, Коля Васин решил вывести формулу, которая носила бы его имя. После нескольких попыток ему это удалось:

$\displaystyle \sqrt{\frac{1}{-1}}$ = $\displaystyle \sqrt{\frac{-1}{1}}$ $\displaystyle \Rightarrow$ $\displaystyle {\frac{\sqrt1}{\sqrt{-1}}}$ = $\displaystyle {\frac{\sqrt{-1}}{\sqrt1}}$ $\displaystyle \Rightarrow$ $\displaystyle \sqrt{1}$$\displaystyle \sqrt{1}$ = $\displaystyle \sqrt{-1}$$\displaystyle \sqrt{-1}$ $\displaystyle \Rightarrow$ 1 = - 1.

После некоторых размышлений, Коля придумал более короткое доказательство своего тождества:

-1 = i2 = $\displaystyle \sqrt{-1}$ . $\displaystyle \sqrt{-1}$ = $\displaystyle \sqrt{(-1)(-1)}$ = $\displaystyle \sqrt{1}$ = 1.

Не ошибся ли где-нибудь Коля Васин?

Прислать комментарий     Решение

Задача 61543

Темы:   [ Задачи-шутки ]
[ Ряды (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?
Прислать комментарий     Решение

Задача 64309

Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7

Автор: Фольклор

Замените буквы цифрами в ребусе  Г + О = Л – О = В × О = Л – О = М – К = А  так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса.

Прислать комментарий     Решение

Задача 64322

Темы:   [ Математическая логика (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 7,8

Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня?

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .