ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В школе колдовства 13 учеников. Перед экзаменом по ясновидению преподаватель посадил их за круглый стол и попросил угадать, кто получит диплом ясновидящего. Про себя и двух своих соседей все скромно умолчали, а про всех остальных написали: "Никто из этих десяти не получит!" Конечно же, все сдавшие экзамен угадали, а все остальные ученики ошиблись. Сколько колдунов получили диплом? Решение |
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 1308]
На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор:
Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?
В школе колдовства 13 учеников. Перед экзаменом по ясновидению преподаватель посадил их за круглый стол и попросил угадать, кто получит диплом ясновидящего. Про себя и двух своих соседей все скромно умолчали, а про всех остальных написали: "Никто из этих десяти не получит!" Конечно же, все сдавшие экзамен угадали, а все остальные ученики ошиблись. Сколько колдунов получили диплом?
На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?
Из пяти монет – две фальшивые. Одна из фальшивых монет легче настоящей, а другая – на столько же тяжелее настоящей.
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 1308] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|