Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 80]
|
|
Сложность: 3 Классы: 8,9,10
|
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.
|
|
Сложность: 3+ Классы: 8,9,10
|
В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре
чисел, связанных ребром, одно из них делилось на другое, а во всех других парах
такого не было?
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 80]