ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Саша начертил квадрат размером 6×6 клеток и поочередно закрашивает в нём по одной клетке. Закрасив очередную клетку, он записывает в ней число – количество закрашенных клеток, соседних с ней. Закрасив весь квадрат, Саша складывает числа, записанные во всех клетках. Докажите, что в каком бы порядке Саша ни красил клетки, у него в итоге получится одна и та же сумма. (Соседними считаются клетки, имеющие общую сторону.)

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 199]      



Задача 64538

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Саша начертил квадрат размером 6×6 клеток и поочередно закрашивает в нём по одной клетке. Закрасив очередную клетку, он записывает в ней число – количество закрашенных клеток, соседних с ней. Закрасив весь квадрат, Саша складывает числа, записанные во всех клетках. Докажите, что в каком бы порядке Саша ни красил клетки, у него в итоге получится одна и та же сумма. (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение

Задача 65113

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

Прислать комментарий     Решение

Задача 65603

Темы:   [ Последовательности (прочее) ]
[ Инварианты ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 4-
Классы: 6,7,8

На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну.
  а) Приведите пример того, как такое могло быть.
  б) Докажите, что число голов у первого дракона во всех примерах одно и то же.

Прислать комментарий     Решение

Задача 66332

Темы:   [ Связность. Связные множества ]
[ Инварианты ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10,11

В левой нижней клетке доски 100×100 стоит фишка. Чередуя горизонтальные и вертикальные ходы в соседнюю по стороне клетку (первый ход горизонтальный), она дошла сначала до левой верхней клетки, а потом до правой верхней. Докажите, что найдутся две такие клетки $A$ и $B$, что фишка не менее двух раз делала ход из $A$
в $B$.

Прислать комментарий     Решение


Задача 107979

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9,10

На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .