ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 499]      



Задача 55508

Темы:   [ Признаки подобия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагональ AC вписанного четырёхугольника ABCD является биссектрисой угла DAB.
Докажите, что один из двух треугольников, отсекаемых от треугольника ABC диагональю BD, подобен треугольнику ABC.

Прислать комментарий     Решение

Задача 61180

Темы:   [ Геометрия комплексной плоскости ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Докажите, что условием того, что четыре точки z0, z1, z2, z3 лежат на одной окружности (или прямой) является вещественность числа  

Прислать комментарий     Решение

Задача 64390

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

Прислать комментарий     Решение

Задача 64543

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+

Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

Прислать комментарий     Решение

Задача 64919

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .