ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 292]      



Задача 64832

Темы:   [ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 8,9,10

В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

Прислать комментарий     Решение

Задача 65667

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 7,8,9

На медиане AM треугольника ABC нашлась такая точка K, что  AK = BM.  Кроме того,  ∠AMC = 60°.  Докажите, что  AC = BK.

Прислать комментарий     Решение

Задача 66260

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9,10

Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что  AG = AB.

Прислать комментарий     Решение

Задача 52504

Темы:   [ Вспомогательная окружность ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD.

Прислать комментарий     Решение

Задача 64513

Темы:   [ Ромбы. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Поворот помогает решить задачу ]
[ Симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9,10

В ромбе ABCD  ∠А = 120°.  На сторонах BC и CD взяты точки M и N так, что  ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .