ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета. AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что: Четыре чёрные коровы и три рыжие дают за пять дней столько молока, сколько три чёрные коровы и пять рыжих дают за четыре дня. В чашке, стакане, кувшине и банке находятся молоко, лимонад, квас и вода. Известно, что вода и молоко не в чашке; сосуд с лимонадом стоит между кувшином и сосудом с квасом; в банке не лимонад и не вода; стакан стоит около банки и сосуда с молоком. В какой сосуд налита каждая из жидкостей? В клетках таблицы 5×5 стоят ненулевые цифры. В каждой строке и в каждом столбце из всех стоящих там цифр составлены десять пятизначных чисел. Может ли оказаться, что из всех этих чисел ровно одно не делится на 3? Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём a > b. Размахом блуждания точки назовём разность между наибольшей и
наименьшей координатами точки за всё время блуждания. |
Страница: << 1 2 3 >> [Всего задач: 13]
Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём a > b. Размахом блуждания точки назовём разность между наибольшей и
наименьшей координатами точки за всё время блуждания.
При посадке в самолет выстроилась очередь из n пассажиров, у каждого из которых имеется билет на одно из n мест. Первой в очереди стоит сумасшедшая старушка. Она вбегает в салон и садится на случайное место (возможно, и на свое). Далее пассажиры по очереди занимают свои места, а в случае, если свое место уже занято, садятся случайным образом на одно из свободных мест. Какова вероятность того, что последний пассажир займет свое место?
В каждую жвачку вложен один из n вкладышей, причём каждый вкладыш встречается с вероятностью 1/n.
Каждый вечер Иван Таранов приходит в случайное время на автобусную остановку. На этой остановке останавливаются два маршрута - на одном из них Иван может ехать к себе домой, а на другом - в гости к другу Козявкину. Иван ждет первого автобуса и в зависимости от того, какой автобус подошел, он едет либо домой, либо к другу. Через некоторое время Иван заметил, что в гостях у Козявкина он оказывается при этом примерно в два раза чаще, чем дома. На основе этого Иван делает вывод, что один из автобусов ходит в два раза чаще другого. Прав ли он? Могут ли при выполнении условия задачи автобусы ходить с одинаковой частотой? (Предполагается, что автобусы ходят не случайным образом, а по некоторому расписанию.)
Трое друзей решают жребием, кто идет за соком. У них есть одна монета. Как им устроить жребий, чтобы все имели равные шансы бежать?
Страница: << 1 2 3 >> [Всего задач: 13]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке