ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце. Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 2×2, который тоже не приводится.

б) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце или на любой диагонали (угловые клетки тоже считаются диагоналями). Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 4×4, который тоже не приводится.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 215]      



Задача 65205

Темы:   [ Числовые таблицы и их свойства ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что в таблице 8×8 нельзя расставить натуральные числа от 1 до 64 (каждое по одному разу) так, чтобы в ней для любого квадрата 2×2 вида    было выполнено равенство  |ad – bc| = 1.

Прислать комментарий     Решение

Задача 65399

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

а) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце. Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 2×2, который тоже не приводится.

б) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце или на любой диагонали (угловые клетки тоже считаются диагоналями). Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 4×4, который тоже не приводится.

Прислать комментарий     Решение

Задача 65876

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4+
Классы: 8,9,10

а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.

Прислать комментарий     Решение

Задача 78100

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 9

В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.

Прислать комментарий     Решение

Задача 97969

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория групп (прочее) ]
Сложность: 4+
Классы: 8,9,10

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .