Страница:
<< 1 2 3 4 5 6 [Всего задач: 30]
|
|
Сложность: 4 Классы: 9,10,11
|
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Бильярдный стол имеет форму многоугольника (не обязательно
выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины
этого многоугольника – лузы, при попадании в которые шар там и остаётся.
Из вершины A с (внутренним) углом 90° выпущен шар, который
отражается от бортов (сторон многоугольника) по закону "угол падения равен углу
отражения". Докажите, что он никогда не вернётся в вершину A.
Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.
Даны
m = 2
n + 1 точек — середины сторон
m-угольника.
Постройте его вершины.
|
|
Сложность: 6- Классы: 9,10,11
|
Внутри выпуклого стоугольника выбрано
k точек,
2
k 50
. Докажите, что можно отметить
2
k
вершин стоугольника так, чтобы все выбранные точки оказались внутри
2
k -угольника с отмеченными
вершинами.
Страница:
<< 1 2 3 4 5 6 [Всего задач: 30]