Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 70]
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что в любом многоугольнике найдутся две стороны,
отношение которых заключено между числами 1/2 и 2.
|
|
Сложность: 3 Классы: 8,9,10,11
|
А и Б стреляют в тире, но у них есть только один шестизарядный револьвер с одним патроном. Поэтому они договорились по очереди случайным образом крутить барабан и стрелять. Начинает А. Найдите вероятность того, что выстрел произойдёт, когда револьвер будет у А.
|
|
Сложность: 3 Классы: 9,10,11
|
Первый член бесконечной арифметической прогрессии из натуральных чисел равен 1.
Докажите, что среди её членов можно найти 2015 последовательных членов геометрической прогрессии.
|
|
Сложность: 3 Классы: 10,11
|
Имеется лабиринт, состоящий из
n окружностей, касающихся прямой
AB в точке
M. Все окружности расположены по одну сторону от прямой, а их длины
составляют геометрическую прогрессию со знаменателем 2. Два человека в разное
время начали ходить по этому лабиринту. Их скорости одинаковы, а направления
движения различны. Каждый из них проходит все окружности по порядку, и, пройдя
наибольшую, снова идет в меньшую. Доказать, что они встретятся.
|
|
Сложность: 3 Классы: 9,10,11
|
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и при любых а и b. Найдите f(22011).
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 70]