ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией? Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 192]
Пусть z = e2πi/n = cos 2π/n + i sin 2π/n. Для произвольного целого a вычислите суммы
Петя и Вася придумали десять квадратных трёхчленов. Затем Вася по очереди называл последовательные натуральные числа (начиная с некоторого), а Петя каждое названное число подставлял в один из трёхчленов по своему выбору
и записывал полученные значения на доску слева направо. Оказалось, что числа, записанные на доске, образуют арифметическую прогрессию (именно в этом порядке).
Петя и Вася придумали десять многочленов пятой степени. Затем Вася по очереди называл последовательные натуральные числа (начиная с некоторого), а Петя каждое названное число подставлял в один из многочленов по своему выбору и записывал полученные значения на доску слева направо. Оказалось, что числа, записанные на доске, образуют арифметическую прогрессию (именно в этом порядке). Какое максимальное количество чисел Вася мог назвать?
В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p (0 < p < 1). Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите:
Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 192] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|