ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну. |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 199]
Саша начертил квадрат размером 6×6 клеток и поочередно закрашивает в нём по одной клетке. Закрасив очередную клетку, он записывает в ней число – количество закрашенных клеток, соседних с ней. Закрасив весь квадрат, Саша складывает числа, записанные во всех клетках. Докажите, что в каком бы порядке Саша ни красил клетки, у него в итоге получится одна и та же сумма. (Соседними считаются клетки, имеющие общую сторону.)
Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа n, n + 1, ..., n + 8. При каких n он сможет это сделать?
На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну.
В левой нижней клетке доски 100×100 стоит фишка. Чередуя горизонтальные и вертикальные ходы в соседнюю по стороне клетку (первый ход горизонтальный), она дошла сначала до левой верхней клетки, а потом до правой верхней. Докажите, что найдутся две такие клетки $A$ и $B$, что фишка не менее двух раз делала ход из $A$
На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|