ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей). n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр. В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$. Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире? |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]
Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире?
Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.
В однокруговом турнире участвовали 15 команд.
Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке