ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 117]
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
а) уравнение x² + ax + b = 0 не имеет корней, а уравнение [x²] + ax + b = 0 имеет? б) уравнение x² + 2ax + b = 0 не имеет корней, а уравнение [x²] + 2ax + b = 0 имеет?
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
Квадратный трёхчлен f(x) = ax² + bx + c таков, что уравнение f(x) = x не имеет вещественных корней.
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 117] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|