ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P. Решение |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 258]
Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.
Имеется n случайных векторов вида (y1, y2, y3), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами (Y1, Y2, Y3).
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке
Каковы первые четыре цифры числа 11 + 2² + 3³ + ... + 999999 + 10001000?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|