Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

Вниз   Решение


Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.

ВверхВниз   Решение


На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

ВверхВниз   Решение


Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

ВверхВниз   Решение


Докажите, что через две параллельные прямые можно провести единственную плоскость.

ВверхВниз   Решение


Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

ВверхВниз   Решение


См. задачу 4 для 8 класса. Кроме того, доказать, что если длины отрезков a1,..., a6 удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6, то из этих отрезков можно построить равноугольный шестиугольник.

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника ABCDEF попарно параллельны. Докажите, что:
а) площадь треугольника ACE составляет не менее половины площади шестиугольника.
б) площади треугольников ACE и BDF равны.

ВверхВниз   Решение


На боковом ребре AB пирамиды взяты точки K и M , причём AK = BM . Через эти точки проведены сечения, параллельные основанию пирамиды. Известно, что сумма площадей этих сечений составляет площади основания пирамиды. Найдите отношение KM:AB .

ВверхВниз   Решение


100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 316]      



Задача 65870

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 65877

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 66131

Темы:   [ Процессы и операции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

Зубной врач запретил Соне съедать больше десяти карамелек в день, причём, если в какой-то день она съедает больше семи карамелек, то в следующие два дня ей нельзя съедать более пяти карамелек за день. Какое наибольшее количество карамелек Соня сможет съесть за 25 дней, следуя указаниям зубного врача?

Прислать комментарий     Решение

Задача 66171

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Задача 66176

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Объем помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .