ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка  (p, q),  что трёхчлен  x² + px + q  также имеет ровно один корень.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 117]      



Задача 65704

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 65726

Темы:   [ Исследование квадратного трехчлена ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Автор: Храбров А.

Существуют ли такие целые числа a и b, что
  а) уравнение  x² + ax + b = 0  не имеет корней, а уравнение  [x²] + ax + b = 0 имеет?
  б) уравнение  x² + 2ax + b = 0  не имеет корней, а уравнение  [x²] + 2ax + b = 0  имеет?
Прислать комментарий     Решение


Задача 66100

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка  (p, q),  что трёхчлен  x² + px + q  также имеет ровно один корень.

Прислать комментарий     Решение

Задача 73749

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 8,9,10

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Прислать комментарий     Решение

Задача 77952

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Если при любом положительном p все корни уравнения  ax² + bx + c + p = 0  действительны и положительны, то коэффициент a равен нулю. Докажите.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .