ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разрежьте квадрат на 3 части, из которых можно сложить треугольник с 3 острыми углами и тремя различными сторонами. Богатый сенатор, умирая, оставил жену в ожидании ребёнка. После смерти сенатора выяснилось, что на своё имущество, равное 210 талантам, он составил следующее завещание: "В случае рождения сына отдать мальчику две трети состояния, а остальную треть – матери; в случае же рождения дочери отдать девочке одну треть состояния, а остальные две трети – матери". У вдовы сенатора родились близнецы – мальчик и девочка. Такой возможности завещатель не предусмотрел. Как можно разделить имущество между тремя наследниками с наилучшим приближением к условию завещания? Полтора землекопа выкопали за полтора часа полторы ямы. Сколько ям выкопают два землекопа за два часа? Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной? Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего). Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость? Одним пакетиком чая можно заварить два или три стакана чая. Мила и Таня разделили коробку чайных пакетиков поровну. Мила заварила 57 стаканов чая, а Таня – 83 стакана. Сколько пакетиков могло быть в коробке? На доске написаны n > 3 различных натуральных чисел, меньших чем (n – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]
По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?
На доске написаны n > 3 различных натуральных чисел, меньших чем (n – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.
а) Докажите, что в таблице б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?
Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k.
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке