ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Логика и теория множеств
>>
Математическая логика
>>
Математическая логика (прочее)
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На острове рыцарей и лжецов каждый дружит с десятью другими жителями (рыцари всегда говорят правду, лжецы всегда лгут). Каждый житель острова заявил, что среди его друзей больше лжецов, чем рыцарей. Может ли количество рыцарей быть вдвое больше, чем количество лжецов? Решение |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 205]
3) Л впереди А, но после Д; 4)В - после Е через одного; 5) Д - между Б и Г; 6) Е - рядом с К, но впереди В. В каком порядке выстроились мальчики?
На острове рыцарей и лжецов каждый дружит с десятью другими жителями (рыцари всегда говорят правду, лжецы всегда лгут). Каждый житель острова заявил, что среди его друзей больше лжецов, чем рыцарей. Может ли количество рыцарей быть вдвое больше, чем количество лжецов?
В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета?
На острове живут три племени: рыцари, которые всегда говорят правду, лжецы, которые всегда лгут, и хитрецы, которые иногда говорят правду, а иногда лгут. За круглым столом сидят 100 представителей этих племен. Каждый из сидящих за столом произнес две фразы: 1) “Слева от меня сидит лжец”; 2) “Справа от меня сидит хитрец”. Сколько за столом рыцарей и сколько лжецов, если половина присутствующих – хитрецы?
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 205] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|