ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд лежат 100 монет, часть – вверх орлом, а остальные – вверх решкой. За одну операцию разрешается выбрать семь монет, лежащих через равные промежутки (т.е. семь монет, лежащих подряд, или семь монет, лежащих через одну, и т.д.), и все семь монет перевернуть. Докажите, что при помощи таких операций можно все монеты положить вверх орлом.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 737]      



Задача 66385

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9

Робин Гуд взял в плен семерых богачей и потребовал выкуп. Слуга каждого богача принёс кошелёк с золотом, и все они выстроились в очередь перед шатром, чтобы отдать выкуп. Каждый заходящий в шатер слуга кладёт принесённый им кошелёк на стол в центре шатра и, если такого или большего по тяжести кошелька ранее никто не приносил, богача отпускают вместе со слугой. Иначе слуге велят принести ещё один кошелёк, который был бы тяжелее всех, лежащих в этот момент на столе. Сходив за очередным кошельком, слуга становится в конец очереди. Походы за кошельками занимают у всех одинаковое время, поэтому очерёдность захода в шатёр не сбивается.

Когда Робин Гуд отпустил всех пленников, у него на столе оказалось: а) 28; б) 27 кошельков. Каким по счёту стоял в исходной очереди слуга богача, которого отпустили последним?

Прислать комментарий     Решение

Задача 66482

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Рябов П.

Карлсон ест треугольный торт. Он режет торт по биссектрисе одного из углов, съедает одну из частей, а с другой повторяет ту же операцию. Если Карлсон съест больше половины торта, он станет не в меру упитанным мужчиной в самом расцвете сил. Докажите, что рано или поздно это произойдёт.
Прислать комментарий     Решение


Задача 66518

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4

В ряд лежат 100 монет, часть – вверх орлом, а остальные – вверх решкой. За одну операцию разрешается выбрать семь монет, лежащих через равные промежутки (т.е. семь монет, лежащих подряд, или семь монет, лежащих через одну, и т.д.), и все семь монет перевернуть. Докажите, что при помощи таких операций можно все монеты положить вверх орлом.
Прислать комментарий     Решение


Задача 66549

Темы:   [ Переправы ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 6,7

Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?
Прислать комментарий     Решение


Задача 66583

Темы:   [ Взвешивания ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .