Страница:
<< 139 140 141 142
143 144 145 >> [Всего задач: 737]
|
|
Сложность: 5- Классы: 8,9,10
|
У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?
|
|
Сложность: 5- Классы: 10,11
|
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
|
|
Сложность: 5 Классы: 8,9,10,11
|
В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).
|
|
Сложность: 5 Классы: 10,11
|
На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых
десяти последовательных цифрах поменять местами первые пять с пятью следующими.
Два таких числа называются
похожими, если одно из них получается из другого
несколькими такими операциями. Какое наибольшее количество попарно непохожих
чисел можно выбрать?
Страница:
<< 139 140 141 142
143 144 145 >> [Всего задач: 737]