ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой? ![]() ![]() В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно. ![]() ![]() |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 298]
N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.
На каждой из двух параллельных прямых a и b отметили по 50 точек.
б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |