Версия для печати
Убрать все задачи
В четырёхугольной пирамиде
SABCD основание
ABCD имеет своей
осью симметрии диагональ
AC , которая равна 9, а точка
E
пересечения диагоналей четырёхугольника
ABCD делит отрезок
AC
так, что отрезок
AE меньше отрезка
EC . Через середину
бокового ребра пирамиды
SABCD проведена плоскость, параллельная
основанию и пересекающаяся с рёбрами
SA ,
SB ,
SC ,
SD соответственно
в точках
A1
,
B1
,
C1
,
D1
. Получившийся многогранник
ABCDA1
B1
C1
D1
, являющийся частью пирамиды
SABCD , пересекается
с плоскостью
α по правильному шестиугольнику, со стороной
2. Найдите площадь треугольника
ABD , если плоскость
α
пересекает отрезки
BB1
и
DD1
.

Решение
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$

Решение