ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи 16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)? Решение |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 737]
На столе лежат 6 яблок (не обязательно одинакового веса). Таня разложила их по 3 на две чашки весов, и весы остались в равновесии. А Саша разложил те же яблоки по-другому: 2 яблока на одну чашку и 4 на другую, и весы опять остались в равновесии. Докажите, что можно положить на одну чашку весов одно яблоко, а на другую два так, что весы останутся в равновесии.
а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.) б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.
В центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены. Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если а) $M$ – квадрат $21\times21$; б) $M$ – прямоугольник $20\times21$?
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|