Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 737]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм.
— Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит!
— Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм!
Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый
игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый
может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл
соперник?
|
|
Сложность: 3+ Классы: 10,11
|
Имеется 81 гиря весом 1
2 г, 2
2 г, 3
2 г, ..., 81
2 г.
Разложить их на 3 равные по весу кучи.
|
|
Сложность: 3+ Классы: 9,10
|
Страна Фарра расположена на
1 000 000 000 островов. Между некоторыми
островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что
с каждого острова можно попасть на любой другой (возможно, за несколько дней).
Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и
не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит
на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает,
где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с
ним на одном острове).
Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по
своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После
одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок
присуждает первому столько очков, какова разница между этими оставшимися
числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55
очков, как бы ни играл второй.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 737]