ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что в таблице где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.б) В каждой ли строке (кроме первых двух) встречается число, кратное 3? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]
Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
На доске написаны два 2007-значных числа. Известно, что из обоих чисел можно вычеркнуть по семь цифр так, чтобы получились одинаковые числа. Докажите, что в исходные числа можно вписать по семь цифр так, чтобы тоже получились одинаковые числа.
а) Докажите, что в таблице где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?
На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|