ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика" Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501]
Шеренга состоит из N ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после N – 1 такой операции ребята будут стоять по убыванию роста слева направо.
На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.
m и n – натуральные числа, m < n. Докажите, что
P и Q – подмножества множества выражений вида (a1, a2, ..., an), где ai – натуральные числа, не превосходящие данного натурального числа k (таких выражений всего kn). Для каждого элемента (p1, ..., pn) множества P и каждого элемента (q1, ..., qn) множества Q существует хотя бы один такой номер m, что pm = qm. Докажите, что хотя бы одно из множеств P и Q состоит не более чем из kn–1 элементов для
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|