ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 93]      



Задача 61166

Темы:   [ Метод спуска ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

а) Используя геометрические соображения, докажите, что основание и боковая сторона равнобедренного треугольника с углом 36o при вершине несоизмеримы.
б) Придумайте геометрическое доказательство иррациональности $ \sqrt{2}$.

Прислать комментарий     Решение

Задача 73680

Темы:   [ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Средние величины ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Прислать комментарий     Решение

Задача 98286

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.

Прислать комментарий     Решение

Задача 110212

Темы:   [ Разложение на множители ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?
Прислать комментарий     Решение


Задача 61111

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 9,10,11

Пусть a, b – натуральные числа и  (a, b) = 1.  Докажите, что величина    не может быть действительным числом за исключением случаев
(a, b) = (1, 1), (1,3), (3,1).

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .