Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 158]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Клетки шахматной доски 8×8 занумерованы по диагоналям, идущим влево вниз, от 1 в левом верхнем до 64 в правом нижнем углу: (см. рис.). Петя расставил на доске 8 фишек так, что на каждой горизонтали и на каждой вертикали оказалось по одной фишке. Затем он переставил фишки так, что каждая фишка попала на клетку с бóльшим номером. Могло ли по-прежнему в каждой строке и в каждом столбце оказаться по одной фишке?
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть A – угловая клетка шахматной доски, B – соседняя с ней по диагонали клетка. Докажите, что число способов обойти всю доску хромой ладьей (ходит на одну клетку по вертикали или горизонтали), начиная с клетки A, больше, чем число способов обойти всю доску хромой ладьей, начиная с клетки B. (Ладья должна побывать на каждой клетке ровно один раз.)
|
|
Сложность: 4 Классы: 8,9,10
|
Каждая клетка доски 100×100 окрашена либо в чёрный, либо в белый цвет, причём все клетки, примыкающие к границе доски – чёрные. Оказалось, что нигде на доске нет одноцветного клетчатого квадрата 2×2. Докажите, что на доске найдётся клетчатый квадрат 2×2, клетки которого окрашены в шахматном порядке.
|
|
Сложность: 4 Классы: 9,10,11
|
Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)
|
|
Сложность: 4 Классы: 9,10,11
|
Какое наибольшее количество а) ладей; б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 158]