ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется кусок цепи из 60 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 60 г (раскованное звено весит тоже 1 г)?

   Решение

Задачи

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 737]      



Задача 77922

Темы:   [ Взвешивания ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

Имеется кусок цепи из 60 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 60 г (раскованное звено весит тоже 1 г)?
Прислать комментарий     Решение


Задача 78265

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Прислать комментарий     Решение

Задача 78671

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)?

Замечание. Считается, что дачные участки расположены в одну линию.
Прислать комментарий     Решение


Задача 110131

Темы:   [ Взвешивания ]
[ Правило произведения ]
[ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Прислать комментарий     Решение

Задача 110147

Темы:   [ Лингвистика ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное k , для которого можно выбрать k различных слов, в записи которых используется ровно k различных букв.
Прислать комментарий     Решение


Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .