Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите следующие свойства функций gk,l(x) (определения функций gk,l(x) смотри здесь):
  а)  gk,l(x) = ,  где  hm(x) = (1 – x)(1 – x²)...(1 – xm)   (h0(x) = 1);
  б)  gk,l(x) = gl,k(x);
  в)   gk,l(x) = gk–1,l(x) + xkgk,l–1(x) = gk,l–1(x) + xlgk–1,l(x);
  г)  gk,l+1(x) = g0,l(x) + xg1,l(x) + ... + xkgk,l(x);
  д)  gk,l(x) – многочлен степени kl.
  Многочлены gk,l(x) называются многочленами Гаусса. Их свойства во многом аналогичны свойствам биномиальных коэффициентов. В частности, среди многочленов они играют ту же роль, что и биномиальные коэффициенты среди чисел.

Вниз   Решение


Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]      



Задача 78061

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.

Прислать комментарий     Решение

Задача 78097

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

От A до B  999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B, , ..., .
Сколько среди них таких, на которых имеются только две различные цифры?

Прислать комментарий     Решение

Задача 78132

Темы:   [ Десятичная система счисления ]
[ Раскладки и разбиения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10

Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых сумма двух первых цифр равна сумме двух последних цифр?

Прислать комментарий     Решение

Задача 78525

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 10,11

Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.
Прислать комментарий     Решение


Задача 78742

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .