ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что можно так расположить числа от 1 до n² в таблицу n×n, чтобы суммы чисел каждого столбца были равны.

   Решение

Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 1110]      



Задача 78039

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 11

Квадратная таблица в n² клеток заполнена числами от 1 до n так, что в каждой строке и каждом столбце встречаются все эти числа. Если n нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., n. Доказать.

Прислать комментарий     Решение

Задача 78079

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.

Прислать комментарий     Решение

Задача 78081

Темы:   [ Текстовые задачи (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 9,10

Груз весом 13,5 т упакован в ящики так, что вес каждого ящика не превосходит 350 кг. Докажите, что этот груз можно перевезти на 11 полуторатонках. (Весом пустого ящика можно пренебречь.)

Прислать комментарий     Решение

Задача 78184

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10,11

В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.

Прислать комментарий     Решение

Задача 78248

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Доказать, что можно так расположить числа от 1 до n² в таблицу n×n, чтобы суммы чисел каждого столбца были равны.

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .