ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 737]      



Задача 78150

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом шагу разрешается одновременно изменить знак у любых 11 чисел первого набора. (Два набора считаются одинаковыми, если у них на одинаковых местах стоят одинаковые числа.)

Прислать комментарий     Решение

Задача 78535

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На квадратном поле размерами 99×99, разграфленном на клетки размерами 1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за этим второй игрок может поставить нолик на любую из восьми клеток, окружающих крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся поставить крестик на любую угловую клетку. Доказать, что при любой игре второго игрока первый всегда может выиграть.
Прислать комментарий     Решение


Задача 79445

Темы:   [ Теория игр (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

Дорожки в зоопарке образуют равносторонний треугольник, в котором проведены средние линии. Из клетки сбежала обезьянка. Её ловят два сторожа. Смогут ли они поймать обезьянку, если все трое будут бегать только по дорожкам, скорость обезьянки и скорости сторожей равны и они видят друг друга?

Прислать комментарий     Решение

Задача 79462

Темы:   [ Теория алгоритмов (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 11

Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!

Прислать комментарий     Решение

Задача 97939

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .