ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В тетраэдре ABCD известно, что AB = 3 , BC = 4 , AC = 5 , AD = DB = 2 , DC = 4 . Найдите медиану тетраэдра, проведённую из вершины D .

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 87213

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр ABCD , в котором AB = BD = 3 , AC = CD = 5 , AD = BC = 4 . Найдите AM , где M – точка пересечения медиан грани BCD .
Прислать комментарий     Решение


Задача 87214

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC .
Прислать комментарий     Решение


Задача 87215

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр AB С D , в котором AB = 6 , AC = 7 , AD = 3 , BC = 8 , BD = 4 , CD = 5 . Найдите CM , где M – точка пересечения медиан грани ADB .
Прислать комментарий     Решение


Задача 87040

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Дан тетраэдр ABCD . Все плоские углы при вершине D – прямые; DA = 1 , DB = 2 , DC = 3 . Найдите медиану тетраэдра, проведённую из вершины D .
Прислать комментарий     Решение


Задача 87043

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

В тетраэдре ABCD известно, что AB = 3 , BC = 4 , AC = 5 , AD = DB = 2 , DC = 4 . Найдите медиану тетраэдра, проведённую из вершины D .
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .