ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольной пирамиде два противоположных ребра равны 12 и 4, а остальные рёбра равны 7. В пирамиду вписана сфера. Найдите расстояние от центра сферы до ребра, равного 12.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 86990

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

Две грани треугольной пирамиды – равносторонние треугольники со стороной a . Две другие грани – равнобедренные прямоугольные треугольники. Найдите радиус вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 87093

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде два противоположных ребра равны 12 и 4, а остальные рёбра равны 7. В пирамиду вписана сфера. Найдите расстояние от центра сферы до ребра, равного 12.
Прислать комментарий     Решение


Задача 87094

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде SABC боковое ребро SB перпендикулярно плоскости основания ABC , а его длина равна 2 . Рёбра AB и BC равны , а ребро AC равно 2. Найдите расстояние от центра вписанной в пирамиду сферы до вершины S .
Прислать комментарий     Решение


Задача 87095

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде PABC боковое ребро PB перпендикулярно плоскости основания ABC и равно 12, AB = BC = 7 , AC = 4 . Сфера, центр O которой лежит на ребре AB , касется плоскостей граней PAC и PBC . Найдите расстояние от центра O до ребра PB .
Прислать комментарий     Решение


Задача 110469

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

Основанием пирамиды SABCD является трапеция ABCD с основаниями BC и AD , причём BC:AD = 2:5 . Диагонали трапеции пересекаются в точке E , а центр O вписанной в пирамиду сферы лежит на отрезке SE и делит его в отношении SO:OE = 7:2 . Найдите площадь полной поверхности пирамиды, если площадь боковой грани SBC равна 8.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .