ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника. На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке? Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами. Существует ли трехзначное число, равное произведению своих цифр? |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 499]
Существует ли трехзначное число, равное произведению своих цифр?
Докажите, что в десятичной записи чисел 19902003 и 19902003 + 22003 одинаковое число цифр.
Найти числа, равные удвоенной сумме своих цифр.
Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?
На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 499]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке