ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 302]      



Задача 66086

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?

Прислать комментарий     Решение

Задача 66118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?

Прислать комментарий     Решение

Задача 79276

Темы:   [ Обходы многогранников ]
[ Куб ]
Сложность: 3+
Классы: 10,11

На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?
Прислать комментарий     Решение


Задача 97975

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Анджанс А.

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

Прислать комментарий     Решение

Задача 98153

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9,10

Дан куб с ребром длины n см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .