ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба
поставлено число, равное произведению чисел в вершинах этой грани. |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 199]
За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин
сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней:
тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?
Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?
В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба
поставлено число, равное произведению чисел в вершинах этой грани.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|