Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных?

Вниз   Решение


Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

ВверхВниз   Решение


Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

ВверхВниз   Решение


Автор: Ионин Ю.И.

Сумма n положительных чисел  x1, x2, x3, ..., xn  равна 1.
Пусть S – наибольшее из чисел  
Найдите наименьшее возможное значение S. При каких значениях  x1, x2, ..., xn  оно достигается?

ВверхВниз   Решение


Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

ВверхВниз   Решение


На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

ВверхВниз   Решение


В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 222]      



Задача 35574

Темы:   [ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Можно ли расставить по кругу семь целых неотрицательных чисел так, чтобы сумма каких-то трёх расположенных подряд чисел была равна 1, каких-то трёх подряд расположенных – 2, ... , каких-то трёх подряд расположенных – 7?

Прислать комментарий     Решение

Задача 60433

 [Двоечники]
Темы:   [ Подсчет двумя способами ]
[ Комбинаторика (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8,9,10

В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)

Прислать комментарий     Решение

Задача 79607

Тема:   [ Подсчет двумя способами ]
Сложность: 3
Классы: 7,8,9

Каждый участник двухдневной олимпиады в первый день решил столько же задач, сколько все остальные в сумме – во второй день.
Докажите, что все участники решили поровну задач.

Прислать комментарий     Решение

Задача 88268

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
Сложность: 3
Классы: 5,6,7

На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя.

Докажите, что посетителей было ровно столько же, сколько кошек.

Прислать комментарий     Решение

Задача 97981

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .