ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
  а) Докажите, что при  n = 9  это можно сделать за 5 операций;
Докажите, что при  n = 52  это
  б) можно сделать за 27 операций;
  в) нельзя сделать за 17 операций;
  г) нельзя сделать за 26 операций.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 87]      



Задача 98070

Темы:   [ Теория алгоритмов (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
[ Полуинварианты ]
Сложность: 4+
Классы: 9,10,11

В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
  а) Докажите, что при  n = 9  это можно сделать за 5 операций;
Докажите, что при  n = 52  это
  б) можно сделать за 27 операций;
  в) нельзя сделать за 17 операций;
  г) нельзя сделать за 26 операций.

Прислать комментарий     Решение

Задача 79258

Темы:   [ Процессы и операции ]
[ Разложение в произведение транспозиций и циклов ]
[ Теория алгоритмов (прочее) ]
[ Правило произведения ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

Прислать комментарий     Решение

Задача 97836

Темы:   [ Полуинварианты ]
[ Перестановки и подстановки ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Прислать комментарий     Решение

Задача 116840

Темы:   [ Процессы и операции ]
[ Перестановки и подстановки (прочее) ]
[ Обратный ход ]
Сложность: 5
Классы: 10,11

Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

Прислать комментарий     Решение

Задача 30330

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки ]
Сложность: 2+
Классы: 7,8,9

Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .