Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 87]
|
|
Сложность: 4- Классы: 8,9,10
|
Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток?
|
|
Сложность: 4 Классы: 9,10,11
|
Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
Удастся ли это ему?
|
|
Сложность: 4 Классы: 8,9,10
|
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.
В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983.
Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 87]