Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 87]
|
|
Сложность: 4+ Классы: 9,10,11
|
В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
а) Докажите, что при n = 9 это можно сделать за 5 операций;
Докажите, что при n = 52 это
б) можно сделать за 27 операций;
в) нельзя сделать за 17 операций;
г) нельзя сделать за 26 операций.
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых
десяти последовательных цифрах поменять местами первые пять с пятью следующими.
Два таких числа называются
похожими, если одно из них получается из другого
несколькими такими операциями. Какое наибольшее количество попарно непохожих
чисел можно выбрать?
|
|
Сложность: 5 Классы: 9,10,11
|
По одной стороне бесконечного коридора расположено бесконечное количество
комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В
комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов),
кроме того, в каждой комнате находится по роялю. Каждый день какие-то два
пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)
|
|
Сложность: 5 Классы: 10,11
|
Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
|
|
Сложность: 2+ Классы: 7,8,9
|
Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
а) ВЕКТОР;
б) ЛИНИЯ;
в) ПАРАБОЛА;
г) БИССЕКТРИСА;
д) МАТЕМАТИКА.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 87]